31 May 2022

Reuters (UK)

Will Ukrainian crisis help bring nuclear in from the cold in Europe?

• Ukraine crisis has forced a rethink of controversial technology in Europe • The United Kingdom plans to increase capacity from 7GW to 24 GW by 2050, but many other countries, including Germany, have eschewed nuclear • Proponents are championing a new breed of small modular reactors, which are quicker and cheaper to build
Source : Reuters: Will Ukrainian crisis help bring nuclear in from the cold in Europe? https://www.reuters.com/business/sustainable-business/will-ukrainian-crisis-help-bring-nuclear-cold-europe-2022-05-04

By Mark Hillsdon Published 4 May 2022

May 4 - Even before Russian shells landed perilously close to the Zaporizhzhia nuclear power plant, the largest in Europe, the role of nuclear in the transition from fossil fuels was complicated. For many, memories of the nuclear disasters at Chernobyl and Fukushima are still fresh, yet at the same time, with Russian gas and oil no longer flowing freely to the West, others argue that nuclear is now more important than ever.

Britain’s Prime Minister Boris Johnson visits Hinkley Point C Nuclear Power Station construction site, at Bridgwater
Britain’s Prime Minister Boris Johnson speaks to Managing Director of Hinkley Point C Stuart Crooks during a tour of the Hinkley Point C Nuclear Power Station construction site, in Bridgwater, Britain April 7, 2022.
© Finnbarr Webster/Pool via REUTERS

Thirty-three countries operate nuclear reactors, among them Russia, China and the United States, with France the largest player in Europe, which derived 25% of its electricity needs from nuclear in 2020.

Finland has recently started up its first new reactor in over 40 years, while Poland is among a clutch of European states waiting to kick-start a nuclear industry. The United Kingdom, meanwhile, announced plans last month to increase nuclear capacity from 7GW to 24 GW by 2050. And France, which already depends on nuclear for 70% of its electricity, said in February it would reverse plans to shut down older reactors, and build another six new ones by 2050.

But many countries have also eschewed the technology, among them Austria, Italy, Spain, Belgium and Germany, which vowed to close down its nuclear fleet by the end of 2022 after Fukushima.

Japan’s Economy, Trade and Industry Minister Toshimitsu Motegi (R), wearing a protective suit and a mask, inspects contaminated water tanks at the tsunami-crippled Fukushima Daiichi nuclear power plant in Fukushima prefecture August 26, 2013, in this photo released by Kyodo.

While German Chancellor Olaf Scholz floated the idea of extending the lives of the country’s last three nuclear plants as it scrambles to replace its heavy dependence on Russian fossil fuels, it is thought that it is more likely to restart some of its coal plants, while looking to import liquified natural gas from the United States.

Tom Greatrex, chief executive of the UK’s Nuclear Industry Association, argues that not only is nuclear energy carbon-free, it also predictable, making it perfect for plugging the gap left by the intermittency of wind and solar, and providing the constant baseload that the grid needs.

This is why the International Energy Agency (IEA) and the Intergovernmental Panel on Climate Change (IPCC) have all included nuclear in their models and projections for a net-zero future, he explains. And in uncertain times, nuclear has a clear role to play in ensuring energy security and independence, too.

“The best time to build a nuclear power station was 10 years ago,” Greatrex continues. “The second-best time is now.” We need clean energy long into the future, he adds: “It’s not as if decarbonisation stops in 2030.”

While nuclear power plants may generate power for decades afterwards – nearly 2.5 times longer than solar and wind plants, according to Karan Satwani, an energy analyst at Rystad Energy ‒ they take on average seven years to build, and the permitting process can take far longer. In the UK, the first new nuclear power plant to be built in 20 years, Hinkley Point C in Somerset, was announced in 2008, but is now not expected to be completed until 2026, while construction costs have ballooned to 22-23 billion pounds. Similar projects in Flamanville, France and Olkiluoto, Finland have also significantly over run in terms of time and budget.

A general view shows the four cooling towers and the reactors of the Electricite de France (EDF) nuclear power plant in Cattenom, France, February 14, 2022.
© REUTERS/Pascal Rossignol

In its energy strategy last month, the UK government announced hundreds of millions in new funding for nuclear and a new body, Great British Nuclear, to accelerate the development of new projects, saying it aimed to deliver up to eight reactors by 2030 “equivalent to one reactor a year, instead of one a decade.”

Whether that will win over nuclear critics remains to be seen.

“Climate effectiveness means fast and cheap,” says Mycle Schneider, who co-ordinates the annual World Nuclear Industry Status Report. “Nuclear power is slow and expensive. … By the time this new generation of nuclear plants come online, it will be too late” to help meet 2030 targets to avoid catastrophic global warming.

Critics also point to the fact that nuclear energy may be carbon-free. But the extraction, processing and transportation of uranium, produces emissions ‒ as does building and dismantling plants, and storing waste. Decommissioning nuclear plants, and the subsequent clean up, also considerably adds to their overall costs.

While nuclear receives scant mention in the European Commission’s REPowerEU plan to turn off the tap on Russian fossil fuel imports, nuclear, along with natural gas, have been included in the new European Union taxonomy framework for what counts as sustainable investment.

Thierry Breton, the EU’s internal markets commissioner, has talked about the need to invest 550 billion euros ($578.9 billion) in new nuclear if Europe is to be net zero by 2050 ‒ money that could be used not just to build new reactors, but reboot existing ones, too.

Rystad’s Satwani says without new investment to replace and extend the lifetime of Europe’s existing power reactors, the EU will gradually lose a large share, perhaps half, of its nuclear power generation capacity by 2050.

As a European Commission spokesperson told Ethical Corporation a day before the Russian invasion: “We need more renewables. They are cheaper, carbon-free and home-grown. (But) we also need a stable source – nuclear – and, during the transition, gas.”

Green activist attend a protest to denounce French push to include nuclear energy and fossil gas in the EU Green taxonomy, in front of the Quai d’Orsay in Paris, France, December 14, 2021.
© REUTERS/Benoit Tessier

The UK is among those backing a new breed of small modular reactors (SMRs), which are quicker and cheaper to build, and can even be housed inside existing coal-powered plants. In November, Rolls-Royce announced that it and two partners, BNF Resources and Exelon Generation, would invest 195 million pounds over the next three years, helped by 210 million pounds in UK Research and Innovation funding, to deliver “a decarbonisation solution that will be available to the UK grid in the early 2030s”.

Each SMR power plant will have the capacity to generate 470 megawatts (MW), equal to 150 onshore wind turbines, and provide baseload generation for 60 years, Rolls-Royce said.

In the United States, TerraPower, a startup co-founded by Bill Gates to revolutionise designs for nuclear reactors, is developing its first demonstration nuclear power plant in Wyoming. The plant, which will cost $4 billion, with half of the money coming from the U.S. government, will be the first to use an advanced nuclear design called Natrium, which uses liquid sodium as a cooling agent instead of water. Sodium has a higher boiling point and can absorb more heat than water, making the plant safer, claim designers.

Greenpeace has called this new breed of reactor a diversion from urgent climate action, again arguing the money would be better spent on renewables. But the new reactors are said to be safer, too, and produce less highly radioactive waste, two influential factors when it comes to the public perception of nuclear.

High-level nuclear waste can remain active for tens of thousands of years and, according to the World Nuclear Association, there is an estimated 250,000 tonnes of spent fuel worldwide, all currently stored above ground, often in cooling pools. Some is the legacy of early atomic development, much of it military, while high-level liquid waste, often the result of reprocessing, goes through a process of vitrification, when it is mixed with silica, to form a block of black glass, and then encased in concrete.

Nuclear accidents in the past have led to the establishment of a global structure that closely monitors the entire cycle of nuclear power generation, explains Satwani of Rystad Energy, and “deep geological disposal is widely agreed to be the best solution for the final disposal of the most radioactive waste produced”.

Risks also remain in transporting the waste, and as yet none of these vast subterranean vaults, often hundreds of metres under the ground, have been opened, with few communities keen to have them on their doorsteps, no matter how deep the spent fuel is buried.

But as the Russian strike near Zaporizhzhia reminded the world, the greatest risk of all is of a missile directly hitting one of Ukraine’s 15 nuclear power reactors, which generate half of its energy needs. Were that to happen, then the brighter future for nuclear would grow very dark indeed.